Explicit finite-difference lattice Boltzmann method for curvilinear coordinates.

نویسندگان

  • Zhaoli Guo
  • T S Zhao
چکیده

In this paper a finite-difference-based lattice Boltzmann method for curvilinear coordinates is proposed in order to improve the computational efficiency and numerical stability of a recent method [R. Mei and W. Shyy, J. Comput. Phys. 143, 426 (1998)] in which the collision term of the Boltzmann Bhatnagar-Gross-Krook equation for discrete velocities is treated implicitly. In the present method, the implicitness of the numerical scheme is removed by introducing a distribution function different from that being used currently. As a result, an explicit finite-difference lattice Boltzmann method for curvilinear coordinates is obtained. The scheme is applied to a two-dimensional Poiseuille flow, an unsteady Couette flow, a lid-driven cavity flow, and a steady flow around a circular cylinder. The numerical results are in good agreement with the results of previous studies. Extensions to other lattice Boltzmann models based on nonuniform meshes are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Boltzmann method for 2D flows in curvilinear coordinates

In order to improve efficiency and accuracy, while maintaining an ease of modeling flows with the lattice Boltzmann approach in domains having complex geometry, a method for modeling equations of 2D flow in curvilinear coordinates has been developed. Both the transformed shallow water equations and the transformed 2D Navier-Stokes equations in the horizontal plane were synchronized with the equ...

متن کامل

The Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates

In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...

متن کامل

Lattice Boltzmann and Finite Volume Simulation of Inviscid Compressible Flows with Curved Boundary

A 2D lattice Boltzmann model for inviscid compressible flows was proposed in this paper. Finite volume method was implemented on 2D curvilinear structural grids to solve the lattice BGK-Boltzmann equations. MUSCL scheme was used to perform interpolation. The obtained results agree excellently well with experimental and previous numerical results. AMS subject classifications: 76P05

متن کامل

A Multilevel Finite Difference Scheme for One-Dimensional Burgers Equation Derived from the Lattice Boltzmann Method

An explicit finite difference scheme for one-dimensional Burgers equation is derived from the lattice Boltzmannmethod. The system of the lattice Boltzmann equations for the distribution of the fictitious particles is rewritten as a three-level finite difference equation. The scheme is monotonic and satisfies maximum value principle; therefore, the stability is proved. Numerical solutions have b...

متن کامل

Finite Difference Interuretation of the Lattice Boltzrnan~ Method

Compared to conventional techniques in computational fluid dynamics, the lattice Boltzmann method (LBM) seems to be a completely different approach to solve the incompressible Navier-Stokes equations. The aim of this article is to correct this impression by showing the close relation of LBM to two standard methods: relaxation schemes and explicit finite difference discretizations. As a side eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 67 6 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003